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A B S T R A C T

Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to
clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and
research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data
of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-
day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride
length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We
collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill,
split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The
spatiotemporal measurements taken with the IMU system were validated against data from an instrumented
treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the
system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait
metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and
overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the
foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study
appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young
adults.

1. Introduction

Individuals with gait disorders exhibit a wide range of spatiotem-
poral abnormalities. Understanding these gait abnormalities is critical
for therapeutic planning, management, and clinical-decision making. In
the clinical setting, therapists often evaluate gait and mobility using
visual observation, questionnaires, or functional assessments to deter-
mine abnormalities in spatiotemporal parameters (e.g., cadence, stance
time, step length, and stride length, etc.) [1]. While these methods of
gait and mobility assessments are simple and do not require sophisti-
cated instruments, they are often qualitative and are prone to evaluator
bias. Further, they are dependent on the experience of the evaluator
and often lack inter-rater reliability [2–5]. Alternative, objective
assessments are critical for accurate documentation of patient progress
and are increasingly sought by third-party payers.

There are several technological approaches to quantitative gait

assessment, with three-dimensional (3-D) motion capture systems and
force plates considered the “gold standard”. However, these instru-
ments are expensive to acquire and operate, reducing their feasibility
for clinical use. There are several low-cost instruments as well, such as
Kinect [6], Wii fit and even webcams [7], which are appealing for
clinicians to perform quantitative assessments. However, all these
technologies (including the high-end 3-D camera and Gait Mat systems)
are restricted to a small capture volume, and only few steps are
available for data analysis. The invention of inertial measurement unit
(IMU) for spatiotemporal and kinematic assessments was a major
technological advancement in the field of biomechanics and wearable
sensors, as they are relatively inexpensive, allow a virtually unlimited
number of steps to be evaluated, and provide the ability to evaluate gait
and movement disorders outside the constrained environments of the
clinic and research laboratory.

Several proprietary IMU-based gait and mobility assessment units
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have been developed in recent years, but only a few are tailored toward
clinical assessment needs. The APDM sensors are one such product,
which allows clinicians to perform unobtrusive gait assessments in a
simple and quick manner [8]. The APDM IMUs are wristwatch sized
wireless devices that capture and store 3-D linear acceleration, angular
velocity, and magnetic field (for directional orientation) using onboard
accelerometers, gyroscopes, and magnetometers, respectively. These
data can be analyzed for gait parameters (stride length, velocity,
cadence, stance and swing time, etc.) using Mobility Lab software.
Their system allows for two sensor configurations when measuring gait:
placing sensors at either the ankle or the foot. With sensors at the ankle,
the system utilizes the angular velocity of the shank to determine
timing of mid-swing, initial contact, and toe-off, and combines these
timing signals with a kinematic model of the lower body to estimate
cadence and stride length [9]. With sensors on the foot, the system
utilizes all the inertial measurements to reconstruct the 3-D kinematic
trajectory of the foot. This approach uses numerical integration of
angular velocity to determine the orientation of the sensor, and
constrained double-integration of the accelerometer signal (rotated
into the world reference frame) to estimate the sensor’s displacement.
Kinematic measurements are computed directly from foot position at
different times in the gait cycle [10]. These two sensor placements have
different strengths and weaknesses, such as improved wearability with
ankle placement, vs. increased data richness with foot placement.

Several clinicians and researchers use the APDM devices and
analysis throughout the United States and elsewhere; however, repeat-
ability and validity data are sparse for gait metrics. This information is
critical as it could significantly affect the clinical-decision making
process and the validity of research outcomes. Moreover, it would ease
the transition for clinicians to start using this new technology in their
practice. Therefore, the primary purpose of this study was to determine
the validity and between-day repeatability of spatiotemporal metrics
recorded by these sensors in healthy individuals.

2. Methods

2.1. Participants and procedures

A total of 39 subjects (25 males, 14 females, age 23.8 ± 6.2 years,
weight 73.4 ± 16.1 kg, height 176.6 ± 10.3 cm, BMI 23.4 ± 3.9)
with no signs of neurological or orthopedic impairment participated in
the study. Exclusion criteria included: recent major ligament injury,
surgery, fracture or muscle injury in the lower limb, abnormal gait
pattern, contraindication to exercise, or other health conditions that
would adversely impact the outcomes of the study. The protocol for this
study was approved by the Institutional Review Board of the University
of Michigan and all participants signed an informed consent before
participating.

2.2. Experimental setup and protocols

Accuracy and repeatability of APDM measurements (Mobility Lab
v1, APDM, Inc., Portland, OR) obtained via their Opal sensors were
tested during standard treadmill, split-belt treadmill, and overground
walking. The normal treadmill condition was utilized to minimize
biological variability in human walking between days [11], and the
split-belt condition was used to test controlled asymmetric walking. For
each condition, IMUs were secured to both the ankles and dorsum of the
feet in order to test the validity and repeatability of gait parameters as
measured with the two different algorithms (Fig. 1).

2.2.1. Treadmill condition
Twenty-five healthy participants visited the laboratory for IMU

validation testing while walking on either a conventional single belt
treadmill (n = 14) (Woodway USA, Waukesha, WI) or an instrumented
split-belt treadmill (n = 11) (Bertec, Columbus, OH) with the belts in a

“tied” configuration. Following a brief warm-up, subjects walked on the
treadmill at 0.45, 0.67, 0.89, 1.12, 1.34, 1.56, and 1.79 m/s for one
minute at each speed. Subjects were given approximately 30 s to
equilibrate at each speed. The order of speeds was pseudo-randomized
for the first testing session (beginning at 0.89 and ending at 0.45 m/s).
In order to measure repeatability of the IMUs, 19 subjects returned for a
second day of testing. The protocol remained identical to the first day
and the order of the trials was preserved.

2.2.2. Split-belt condition
We validated how well the IMUs measure controlled gait asymme-

tries by having subjects (n = 11) walk on the instrumented treadmill
with the belts in a “split” configuration (i.e., belts moving at different
speeds). Subjects performed four trials where the treadmill belt of the
right leg was set to constantly move at 1.5 m/s while the belt for the left
leg moved at 0.50, 0.75, 1.0, and 1.25 m/s; this order was preserved for
all subjects. Repeatability was not performed for this condition, since
split-belt walking is a known adaptation paradigm and therefore, not
repeatable [12].

2.2.3. Overground condition
Fourteen subjects performed several trials of timed 10-m walk test

(10 MWT)—a procedure administered routinely in clinic—while wear-
ing the IMUs. The 10 MWT was administered by having subjects walk
on a 12-m straight walkway, while a stopwatch was used to time the
intermediate 10-m walk (subjects were given one meter to accelerate
and decelerate). Since the mobility lab system removes the first and last
strides of a test, the APDM system and 10MWT were both estimating
steady-state speeds. We used a hand timed 10MWT instead of automatic
timers (e.g., instrumented walkway, infrared timing gates, etc.) because
we wanted to provide validation of the sensors in reference to a gait test
that is clinically used. However, we note that stopwatch measurements
provide similar results to instrumented automatic timers [13].

Subjects first performed the 10MWT three times at their self-paced
speed and the average of the three trials was used in the analysis. In
order to validate the IMUs ability to measure various speeds over-
ground, we then had subjects walk at slower and faster speeds by
having them match a metronome that altered their gait cycle time (and
in consequence, speed) (10% and 20% decrease/increase). All subjects
returned for a second day of testing to determine repeatability at their
self-paced speed.

2.3. Data analysis

Spatiotemporal gait parameters from the IMU sensors were ex-
tracted using APDM’s mobility lab software (Version 1). Gait para-
meters from the instrumented force plate treadmill were computed
using previously established procedures in the literature. Gait events
were detected using vertical ground reaction force from the force plates
on the treadmill (20N cutoff threshold) [14,15]. Stance and swing
percent and gait cycle time were then computed using the gait events.
Cadence was measured by computing the total number of steps per
minute. Stride length was computed using procedures described pre-
viously [16,17].

2.4. Statistical analysis

All data analyses were performed in SPSS for windows version 22
(SPSS Inc., Chicago, IL, USA) and R statistical software (version 3.1.3).
IMU measurements collected during the treadmill, split belt treadmill,
and overground conditions were validated against the data collected
from either the treadmill (speed), the force plates on the split belt
treadmill (stance percent, swing percent, gait cycle time, stride length,
and cadence), or the 10MWT (overground speed), respectively; these
metrics were taken to be either gold or clinical standards. We
performed multiple statistics, some of which may seem redundant, in
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order to provide a complete representation of the system’s validity and
repeatability. Lin’s concordance correlation coefficients (LCC − an
index of how a new test reproduces a “gold standard” test) were used to
validate the IMU data obtained using the ankle and foot configuration.
LCC is a conservative measure that operates with relatively few
assumptions compared to other methods. Thus, LCC would capture
any subtle deviations in agreement between the measured variables and
the reference criteria. It was computed using an SPSS macro that is
available online (http://gjyp.nl/marta/). Pearson's correlation coeffi-
cients (r) were used to measure the linear strength of association
between the IMU data and the data obtained from the treadmill or
stopwatch. Pearson’s correlations are a poor indicator of validity since
they do not account for absolute agreement, but they indicate if
measurements can be fixed with recalibration (i.e., if a variable has a
high Pearson’s correlation, a scaling or offset can be applied to allow
absolute agreement). Bland-Altman plots [18] were also created using a
customized Matlab GUI (downloadable at http://neurro-lab.engin.
umich.edu/downloads) for all validation measures to visually display
any systematic errors in the IMU measurements.

To determine repeatability of the IMU system measurements, we
calculated LCC, Pearson’s correlations (r), intraclass correlations
[ICC(3,1)], and minimally detectable change (MDC) for both ankle
and foot configurations for the treadmill and overground conditions
between the two testing days. Although ICC(3,1) is a similar statistic to
LCC (LCC operates on fewer assumptions), it was included in the
analysis since it is a popular statistic in repeatability literature and is
needed to calculate MDC. MDC scores were calculated using Eqs. (1)
and (2) [19–21].

SEM SD ICC= × 1 − (1)

MDC SEM= × 1.96 × 2 (2)

Where SEM is the standard error of measurement and SD is the standard
deviation of the measure. Using these statistics, we calculated repeat-
ability of the measured speed, stance percent, swing percent, gait cycle
time, stride length, cadence, and step duration as measured with the
IMUs between the two days.

3. Results

Descriptive statistics (average, standard deviation, and range) for all
spatiotemporal gait parameters are provided in supplementary Tables
1–3. We have provided many reliability and validation metrics, some of
which are redundant, in order to provide a complete picture of the

system’s operation. When interpreting the data, we placed most weight
on the more conservative LCC and utilized the following criteria to
determine strength of agreement for all statistics: Excellent (0.75–1.00),
Good (0.60–0.74), Fair (0.40–0.59), and Poor (< 0.40) [22].

3.1. Treadmill condition

Validity of treadmill walking is reported in Table 1 (n = 25 for gait
speed and n=11 for all other variables). Bland-Altman plots showing
validity of the IMU foot and ankle measurements are shown in Fig. 2A
and D and supplemental Figs. 1 and 2. Measurements taken from IMUs
located on the feet showed excellent validity when measuring speed,
gait cycle time, stride length, and cadence (LCC> 0.99). The foot
configuration showed fair validity when measuring the percentage of
the gait cycle spent in the stance and swing phase (LCC = 0.50), but
Pearson’s correlations, which are more forgiving when data diverge
from absolute agreement, for these measures were higher (r > 0.95).
The ankle configuration demonstrated excellent validity when measur-
ing gait speed, gait cycle time and cadence (LCC > 0.93), but was less
accurate when measuring stance and swing percent (LCC = 0.76) or
stride length (LCC = 0.61).

We also report repeatability in Table 1 (n = 19). Both foot and ankle
configurations demonstrated excellent repeatability when measured
over the treadmill (0.92 < LCC < 0.99). This was also the case when
using other repeatability metrics (0.92 < r < 0.99 and 0.92 < IC-
C(3,1) < 0.99).

3.2. Split-belt condition

Validity data for the left, slower moving leg in the presence of an
asymmetry, using the foot and ankle configurations are shown in
Table 2 (n = 11). Bland-Altman plots showing validity of the IMU foot
and ankle measurements are shown in Fig. 2B and E and supplemental
Figs. 3 and 4 . Once again, the foot configuration showed excellent
validity while walking with asymmetry on the split-belt treadmill for
gait speed, gait cycle time, stride length, and cadence (LCC > 0.99).
But the foot configuration showed only fair validity when measuring
the percentage of the gait cycle spent in the stance and swing phase
(LCC = 0.70), while Pearson’s correlations for these measures re-
mained higher (r = 0.97). Validity of the ankle configuration was
excellent when measuring gait cycle time and cadence (LCC > 0.99),
but was less accurate when measuring gait speed, stride length, stance
percent, and swing percent (0.53 < LCC < 0.77). However, Pearson's
correlations remained high (0.93 < r < 0.99) for all of these mea-

Fig. 1. Schematic of the human gait cycle and the spatiotemporal parameters validated in this study. Specifically, we validated the IMU system’s ability to measure the stance percent,
swing percent, stride duration (gait cycle time), stride length, and step duration in addition to the speed and cadence of the cycle.
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sures.

3.3. Overground

Validity and repeatability of the IMU measurements during the
overground condition in healthy subjects are provided in Table 3
(n = 14). Bland-Altman plots showing validity of the IMU foot and
ankle measurements are shown in Fig. 2C and F. There was excellent
strength-of-agreement when validating speed with the foot IMU config-
uration (LCC = 0.95) against the average speed collected with the
10MWT. However, the ankle configuration was less effective at
measuring speed (LCC = 0.86). The Pearson’s correlation was slightly
higher than LCC for ankle speed validity (r = 0.91).

Overground repeatability for the foot configuration was found to be
excellent for measuring gait speed, stride length, cadence, gait cycle
time, and step duration (LCC > 0.93; Table 3). Repeatability was
slightly lower when measuring stance and swing percent (LCC = 0.79).
In the ankle configuration, repeatability was excellent for gait speed,
stride length, cadence, and gait cycle time (LCC > 0.93). It was fair
when measuring stance and swing percent (LCC = 0.64). Other metrics
of repeatability [ICC(3,1) and r] also showed similar trends. For
reference, the repeatability when measuring overground gait speed
using the 10 MWT was 0.91 using LCC, which is consistent with the
measurements from the foot and ankle.

4. Discussion

This study evaluated the validity and repeatability of spatiotempor-
al gait parameters measured with APDM’s IMUs so that clinicians and
researchers can better interpret gait data obtained using this system.
The findings of this study indicate that APDM’s IMU system is both
accurate and repeatable for measuring many spatiotemporal gait
parameters. When comparing the ankle and foot configurations, we
found that the system demonstrated better validity when placed on the
foot as opposed to the ankle. However, both configurations demon-
strated similar repeatability regardless of testing conditions.

We intentionally chose the treadmill condition in this study design
as it enabled us to tease out the true instrumentation error from the
measurement error due to biological variation (i.e., natural variation in
walking patterns between days) because of the fact that gait patterns
are more invariant on a treadmill than overground [11,23,24]. The gait
parameters from the foot configuration, except for the stance and swing
percent, were highly accurate and reliable, thus indicating that the
instrumentation error was minimal for most gait parameters. In
contrast, the gait parameters from the ankle configuration were less
accurate, indicating that this configuration suffered from substantial
instrumentation error. This instrumentation error was particularly
noticeable at low and high gait speeds and in the split-belt condition
where subjects walked with an asymmetric gait. The nature of the error,
though systematic, was nonlinear where the behavior of the error
patterns changed direction with increases in gait speed − for e.g., gait
speed and stride length parameters were overestimated at lower gait
speeds and underestimated at higher gait speeds
(Fig. 2E & Supplemental Fig. 2). The reliability coefficients for the
ankle configuration also reduced noticeably when asymmetry was
introduced. These findings indicate that clinicians and researchers
should cautiously interpret the gait data obtained from the ankle
configuration and should consider using the foot configuration when
feasible. This is particularly relevant to the users of Mobility Lab v1
(which is the vast majority of current users), where the default option is
the ankle configuration. Further, it is important to recognize that the
ability to detect changes in gait speed with an intervention will be low
for the ankle configuration due to the nonlinear nature of the systematic
error.

The findings of this study are similar to others that have validated or
examined repeatability of wearable sensors for gait. Other systems
commonly detect gait by placing sensors at the lumbar [25–27] or
shank [8,27,28] of the subject. Many of these systems are shown to be
reasonably accurate [29,30] and repeatable (ICC ranging between 0.75
and 0.90) [31]. However, similar to this study, it has been found that
gait event detection improved as the sensor was placed closer to the
ground [29]. Interestingly, it appears that many systems have difficulty
in detecting toe off events [27], and show poor accuracy (23–55 ms
error) when reporting stance and swing times [32–35]. This is similar to
the average error in detecting swing time with the foot configuration
used in this study (15.21 ms) (Supplemental Table 1); however, given
the high Pearson’s correlations measured with the APDM system, these
errors could be partially remedied by recalibrating the toe off detection
algorithm.

This study also provides MDC values for spatiotemporal gait
parameters. The MDC represents the minimum amount of change that
must take place for the difference to be considered “real” rather than
measurement error; thus, making it particularly useful for gauging the
effects of rehabilitation. It is to be noted that the MDC values computed
for overground walking using IMUs are similar to or better than those
established using other techniques [36,37]. However, we would like to
point out that the values provided in the tables of this manuscript are to
be used only when interested in determining whether an individual
subject has made a noticeable improvement in their gait parameters as
measured with IMUs. If MDC is being used to determine meaningful
improvements in a group of subjects (e.g., after an intervention), then

Table 1
Validity and repeatability of the IMU system while walking on a treadmill.

Validity LCC r ICC(3,1) MDC

Foot Gait Speed 0.99 0.99
Stride Length 0.99 0.99
Cadence 0.99 0.99
Gait Cycle Time 0.99 0.99
Stance Percent 0.50 0.95
Swing Percent 0.50 0.95

Ankle Gait Speed 0.93 0.98
Stride Length 0.61 0.89
Cadence 0.99 0.99
Gait Cycle Time 0.99 0.99
Stance Percent 0.76 0.95
Swing Percent 0.76 0.95

Repeatability LCC r ICC(3,1) MDC

Foot Gait Speed 0.99 0.99 0.99 0.07
Stride Length 0.99 0.99 0.99 0.10
Cadence 0.99 0.99 0.99 3.30
Gait Cycle Time 0.99 0.99 0.99 0.12
Stance Percent 0.97 0.97 0.97 1.65
Swing Percent 0.97 0.97 0.97 1.65
Step Duration 0.99 0.99 0.99 0.06

Ankle Gait Speed 0.99 0.99 0.99 0.07
Stride Length 0.97 0.97 0.97 0.08
Cadence 0.99 0.99 0.99 6.12
Gait Cycle Time 0.99 0.99 0.99 0.12
Stance Percent 0.92 0.92 0.92 3.38
Swing Percent 0.92 0.92 0.92 3.38

Treadmill Stride Length 0.99 0.99 0.99 0.07
Cadence 0.99 0.99 0.99 5.08
Gait Cycle Time 0.99 0.99 0.99 0.09
Stance Percent 0.98 0.98 0.98 1.39
Swing Percent 0.98 0.98 0.98 1.39

Sample sizes: validity [Gait Speed (n = 25); all other variables (n = 11)]; Repeatability
[Foot and Ankle (n = 19); Treadmill (n = 5)]. Abbreviations: LCC (Lin’s concordance
correlation coefficient), r (Pearson's correlation), α (Cronbach's alpha), ICC (intraclass
correlation); Units for MDC: Gait Speed (m/s), Stride Length (m), Cadence (steps/min),
Gait Cycle Time (s), Step Duration (s).
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the MDC values must be modified to reflect the size of the group (n), as
in Eq. (3) below [38,39].

MDC MDC n= ÷group individual (3)

Thus, theMDCgroup values for the IMU system will reduce proportionally
based on the sample size used in a study.

There are some limitations to this study. First, we only evaluated
gait parameters using equipment and software from APDM; however,
other systems may use different algorithms to detect gait parameters
[25–28,40–42] and therefore, we recommend caution when extrapolat-
ing results to systems other than APDM. Second, the software used for
this study can collect many other metrics that were not used in this
study, including balance, timed up and go, and multiple turning metrics
[43–49]. As a result, we cannot comment on the validity and reliability
of these metrics. Evaluation of these additional metrics could poten-
tially provide greater utility of IMU sensors for research or clinical
work. Finally, we did not use the latest version of the Mobility Lab

software (Mobility Lab v2), as it was not available at the time when the
study was performed. Hence, the performance of the newer version of
the software is not clear from this study. However, we note that the
newer version only uses foot configuration for gait measurements and
to our knowledge there are no changes in algorithms for gait detection.
Hence, we believe that the newer version should perform equally, if not
superior to the current system’s foot configuration.

Fig. 2. Bland-Altman plots for validity of both foot and ankle configurations during treadmill, split-belt, and overground walking conditions. The plots show the validity of gait speed as
measured with the IMUs against the speed measured with the treadmills and ten meter walk test for each subject and speed. The Y-axis of the plot corresponds to the difference between
the two measurement systems, while the X-axis is the average of the two measurements. Solid lines mark the average difference for the whole sample, while the dashed lines correspond to
the 95% limits of agreement. Sample size: Treadmill (n = 25); Split-belt (n = 11); Overground (n = 14).

Table 2
Validity of the IMU system during split-belt condition.

Validity LCC r

Foot Gait Speed 0.99 0.99
Stride Length 0.99 0.99
Cadence 0.99 0.99
Gait Cycle Time 0.99 0.99
Stance Percent 0.70 0.97
Swing Percent 0.70 0.97

Ankle Gait Speed 0.64 0.94
Stride Length 0.53 0.93
Cadence 0.99 0.99
Gait Cycle Time 0.99 0.99
Stance Percent 0.77 0.95
Swing Percent 0.77 0.95

Sample size: validity (n = 11). Abbreviations: LCC (Lin’s concordance correlation
coefficient), r (Pearson's correlation).

Table 3
Validity and repeatability of the IMU system while walking overground.

Validity LCC r ICC(3,1) MDC

Foot Gait Speed 0.95 0.95
Ankle Gait Speed 0.86 0.91

Repeatability LCC r ICC(3,1) MDC

Foot Gait Speed 0.93 0.95 0.94 0.12
Stride Length 0.96 0.97 0.96 0.11
Cadence 0.94 0.95 0.95 2.72
Gait Cycle Time 0.94 0.95 0.94 0.06
Stance Percent 0.79 0.81 0.81 1.49
Swing Percent 0.79 0.81 0.81 1.49
Step Duration 0.96 0.96 0.96 0.03

Ankle Gait Speed 0.92 0.94 0.92 0.09
Stride Length 0.95 0.95 0.95 0.07
Cadence 0.97 0.98 0.98 3.65
Gait Cycle Time 0.97 0.98 0.97 0.04
Stance Percentage 0.64 0.65 0.65 2.82
Swing Percentage 0.64 0.65 0.65 2.82

10 MWT Gait Speed 0.91 0.92 0.92 0.18

Sample sizes: validity and repeatability (n = 14). Abbreviations: LCC (Lin’s concordance
correlation coefficient), r (Pearson's correlation), α (Cronbach's alpha), ICC (intraclass
correlation), 10MWT (ten meter walk test); Units for MDC: Speed (m/s), Stride Length
(m), Cadence (steps/min), Gait Cycle Time (s), Step Duration (s).
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5. Conclusion

The IMU system used in this study appears to be both accurate and
repeatable for measuring spatiotemporal gait parameters in healthy
young adults, particularly when using the foot configuration. This held
true for both treadmill and overground conditions regardless of walking
asymmetries. The ICC and MDC values observed for the system are also
comparable to the existing gold standard gait evaluation techniques.
These findings have meaningful implications for clinicians and re-
searchers who use IMUs for evaluating and studying gait deficits.
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